## Stereographic projection

Wednesday, August 23, 2023 9:02 AM


Stereographic projection


Stereographic Projection of Coordinate Grid to Sphere


$$
\begin{aligned}
& z=x+i y \\
& \left(x, x_{-}\right)-\lambda(x, u) \quad \lambda=?
\end{aligned}
$$



$$
x_{1}=\left(1-x_{3}\right) x=\frac{2 x}{|z|^{2}+1}=\frac{2 \operatorname{Re} z}{|z|^{2}+1}=x_{1}
$$

Other direction $x_{2}=\frac{1}{|z|^{2}+1}$

$$
z=\frac{x_{1}+i x_{2}}{1-x_{3}}
$$

Spherical distance.
$\delta\left(z, z^{\prime}\right):=\left|z-z^{\prime}\right|$-distance on the sphere.


By similarity of triangles:

$$
\begin{aligned}
& \frac{|N-z|}{2}=\frac{1}{|N-z|}=\frac{1}{\sqrt{1+|z|^{2}}} \\
& \text { pythagoras } \\
& \frac{20}{|N-z|} \left\lvert\,=\frac{2}{\sqrt{1+\left|z-z^{\prime}\right|}} \sqrt{1+\left|z^{\prime}\right|^{2}}\right.
\end{aligned}
$$

Same reason.

$$
\frac{\left|N-z^{\prime}\right|}{|N-z|}=\frac{2}{\sqrt{1+|z|^{2}} \sqrt{1+\left|z^{\prime}\right|^{2}}}
$$

So $\triangle N 22^{\prime}$ and $\triangle N_{2 z^{\prime}}$ are similar!

$$
\begin{aligned}
& \operatorname{So} \frac{d\left(z, z^{\prime} \mid\right.}{\left|z-z^{\prime}\right|}=\frac{\left|z-z^{\prime}\right|}{\left|z-z^{\prime}\right|}=\frac{2}{\sqrt{1+|z|^{\prime 2}} \sqrt{1+\left|z^{\prime}\right|^{2}}} . \\
& d\left(z, z^{\prime}\right)=\frac{2\left|z-z^{\prime}\right|}{\sqrt{1+|z|^{2}} \sqrt{1+\left|z^{\prime}\right|^{2}}} \\
& \left|z-|V|=d(z, \infty)=\lim _{z^{\prime} \rightarrow \infty} d\left(z, z^{\prime}\right)=\frac{2}{\sqrt{1+|z|^{2}}} .\right.
\end{aligned}
$$

$$
\begin{aligned}
\text { Bonus }(+\mid p-1): \quad & \tilde{d}\left(z, z^{\prime}\right)=\operatorname{dist}_{\text {spherical }}\left(z, z^{\prime}\right)=? \\
& \left(\text { in terms of } z, z^{\prime}\right) .
\end{aligned}
$$

Circles and straight lines on $C$ are mapped to circles.

Proof. straight lime: the image is the intersocti...

For straight line: the image is the intersection of the sphere $s$ with the plane through the line and $N$ : a circle through $N$ !


Circle: computation:

$$
(x-a)^{2}+(y-b)^{2}=r^{2}
$$

substitute by formula: $\quad\binom{x}{y}=\frac{1}{1-x_{3}}\binom{x_{1}}{x_{2}}$

$$
a x_{1}+b x_{2}+\frac{1+r^{2}-a^{2}-b^{2}}{2} x_{3}=\frac{a^{2}+b^{2}-r^{2}+1}{2}-e_{\text {equation of }}^{\text {aplane! }}
$$

So, again, the image is plane intersected with $\mathbb{S}$ ! And any plane intersecting $\delta$ and not through $N$ is of this form!

Can be done geometrically: see
Proof (stereographic projection proof that circles on the sphere project to circles in the plane)


Some transformations:

| On $\mathbb{C}$ | $0_{n} S$ |
| :--- | :--- |
| $z \rightarrow \bar{z}$ | $\left(x_{1}, x_{2}, x_{3}\right) \rightarrow\left(x_{1}, x_{2}, x_{3}\right)$ |
| $z \rightarrow \frac{1}{z}$ | $\left(x_{1}, x_{2}, x_{3}\right) \rightarrow\left(x_{1}, x_{2},-x_{3}\right)$ |
| $z \rightarrow \frac{1}{z}$ | $\left(x_{1}, x_{2}, x_{3}\right) \rightarrow\left(x_{1},-x_{2},-x_{3}\right)$ |

All of them preserve $d\left(z, z^{\prime}\right)$ !
Does $z \rightarrow z+1$ preserve $d\left(z, z^{\prime}\right)^{7}$. No!

